P = $\frac{\exp(4.9654 - 1.4022 \times UK - 0.0520 \times SF36\text{-}PCS - 0.0458 \times SF36\text{-}MCS - 0.9174 \times KPS)}{1 + \exp(4.9654 - 1.4022 \times UK - 0.0520 \times SF36\text{-}PCS - 0.0458 \times SF36\text{-}MCS - 0.9174 \times KPS)}$